
These slides and notes have also been posted on my own web site at
cryptosmith.com.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 1!

As I said by way of introduction, I’m a relative latecomer to the TCSEC
community, having joined the LOCK TCB project in the early 1990s.

Earlier parts of my career introduced me to fault tolerance while writing
software for an ARPANET router – we called them IMPs – running on a
multiprocessor. In grad school my thesis was on fault tolerance in
robotics. Then I worked on a DARPA robotics program, which dried up
when Army robotics money dried up. Then I joined Secure Computing.

I worked on LOCK and on the Standard Mail Guard. After those efforts I
collected statistics about the costs of high assurance development
processes. Later, I provided peripheral support to a Common Criteria
evaluation. Part of my work was to count the number of evaluations and
look for trends, particularly in the firewall community. I continued that
work in about 2007 when I published a lot of cumulative statistics about
government security evaluations.

Before I talk about the numbers, let me talk a bit about the TCSEC and
multilevel security.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 2!

[this slide was not in the presentation, but I spoke from it]

In the C2 world, the TCSEC is mostly about functionality with minimal
concern about assurance

In the B1 world, we introduce mandatory access control, but still limit
our concern about assurance.

At B2 and above, assurance becomes increasingly important and
increasingly challenging.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 3!

[this slide was not in the presentation, but I spoke from it]

MLS is not the only form of mandatory access control. Secure
Computing tried to apply mandatory access control to firewall
implementation, and other vendors (notably Cyberguard) used MLS in
some of their firewall implementations. I spent a lot of time discussing
the merits of such designs with other security experts in the mid 1990s.
This taught me the following:

1.  It is very hard to reason about MLS behavior. This may be a

problem with access control in general, but it’s particularly acute
with MLS. It took me 6 months of work on the LOCK project before I
was confident in my understanding, but I could still find myself
tricked.

2.  The semantics of MLS can change dramatically as you move
between platforms, and particularly when you move between
assurance levels. While it’s true that there is a mathematical
definition of MLS, the implementation details allow a broad range of
specific and unexpected behaviors. If you relax assurance
requirements, the semantics become really difficult to pin down.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 4!

This was called the “Standard Mail Guard” and I’m told that it lurked in
military command centers as recently as 6 years ago. Heaven knows
there may still be some out there.

It transferred Internet-style email between classified and not-so-
classified networks. This was an “MLS application” since we processed
information that traversed between domains with different security
classifications.

It was supposed to meet all requirements of the TCSEC A1 evaluation,
but it never quite made it through the process. We expected the NSA to
pay for it, because it was their project, but they weren’t institutionally
prepared to do that when the time came.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 5!

But the NSA gleefully adopted this machine because they bought into
our assurance argument.

It looks terrific on paper.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 6!

Though of course it translates into a lot of writing, testing, and
documentation thereof.

This was supposed to be a classic TCSEC A1 process combined more-
or-less elegantly with the DOD’s STD-2167A software development
(documentation) process. While the process is mostly a waterfall, there
were a lot of back-flows. The consistency checks described in the
previous slide would often uncover flaws in specifications, designs, or
running software. We fed those back into the process and updated all
affected documents. Then we repeated analyses to ensure that nothing
broke.

We did our proofs, passed our tests, and ultimately shipped a product,
but we never finished a 100% complete A1 evaluation. The software
didn’t port easily to newer hardware and the NSA didn’t want to repeat
the thing with more portable software. I’d say that they did SELinux
instead, and flushed formal assurance down the toilet.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 7!

Now, let’s face it. A high assurance process costs money. Here are the
numbers for the LOCK TCB. 211 thousand labor hours with a team of
lower-cost midwestern software developers. At least, given our housing
prices we should have been lower cost.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 8!

Here’s a visual comparison of costs. The TCB numbers try to catch the
difference between writing operating system software and writing the
formal lemmas and proofs that would go along with such a thing.

The crypto numbers capture the development cost and the cost of Type
1 crypto endorsement using a pre-packaged crypto module.

You’ll notice that it takes a lot of work to do formal assurance on a
working TCB.

The system engineering costs include 2167A software development
documentation. Testing refers to a typical requirements-oriented testing
program following 2167A documentation. “Lockix” refers to a Unix
emulation package that we hosted atop the TCB so that end users
would see a more-or-less familiar Unix programming and user interface.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 9!

The left-hand bar reflects every MLS flaw we found in the LOCK TCB,
split out by the activity that detected it. The right-hand bar reflects the
relative number of labor hours expended on each activity. Here is a
brief description of the activities:

•  System Specification – specifying system requirements in 2167A-

style documents
•  Formal TCB Design – software design specified in a special format

we called “Top Level Descriptions” (TLDs), and then translated into
the Gypsy formal specification language. The security policy was
likewise specified in Gypsy.

•  Compare Spec-Code – took the TLDs and compared their contents
to the source code implementation to ensure that all elements in the
spec were also in the code, and vice versa

•  Formal Verification – Run mechanical proof checking to verify that
Gypsy design specification was consistent with the Gypsy formal
policy specification.

•  Debug and Test – Conventional requirements- and design-oriented
software debugging and testing.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 10!

But let’s not get too excited about formal assurance as a fault detection
process. Like the dog taught to sniff drugs, it finds what it looks for. But
it doesn’t find every flaw.

This is the weakness of high assurance: practical systems typically
have a lot of properties that can’t be specified formally. If we focus all
attention on those essential, provable properties, we end up with an
unusable system.

During the Standard Mail Guard project, we implemented a guard
system hosted on the LOCK TCB. This effort had to make the TCB
stable and also implement appropriate application software for the
guard function. This diagram presents the result of a 90-day study of
flaw detection that compared the number found by the the testing team
to the number found by the assurance team. Naturally the testing team
found the most flaws by a large margin.

REMEMBER: This chart measures different things from the previous
chart. This chart considers ALL FLAWS in the Mail Guard. The previous
chart looks at MLS FLAWS ONLY in the LOCK TCB.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 11!

But the TCSEC is dead, so let’s move on to the Common Criteria This
chart shows all reported government-endorsed security product
evaluations from the beginnings of the TCSEC in 1984 up to 2006.

The tiny light-blue line along the bottom shows all TCSEC evaluations.

The UK and Germany both fielded active evaluation programs, and
both were folded into the ITSEC program in the early 1990s. The big
orange band that smothers the TCSEC evaluations shows the growth
of ITSEC evaluations in the 1990s. We’ll see more about that in a
minute.

The big purple triangle on the right shows the rapid growth of Common
Criteria evaluations following their introduction and acceptance by
national governments.

Now, I haven’t collected detailed records since 2006, but here’s what I
found on the Common Criteria Portal, an apparently authoritative web
site.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 12!

A casual examination didn’t show me why there was a surge in 2007,
but note that the level has been 200-300 evaluations a year since then.

So it’s continuing at about the same rate as before.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 13!

Originally, the TCSEC was intended to evaluate operating systems. It
was soon adapted to other, more specific software, including network
devices, access control packages, and database managers.

As the other evaluation criteria arose, they were used to evaluate a
whole range of additional products, notably smart cards and, in Europe,
odometers for commercial shipping applications.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 14!

So here’s a look at how assurance relates to recent Common Criteria
evaluations.

The color scale goes from EAL 7 on top to EAL 1 on the bottom.

And before assurance fanatics get too excited, note that the giant
purple band represents EAL 4, which some consider barely tolerable
assurance.

There are a depressingly small number of higher assurance
evaluations.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 15!

This graph comes from a 2006 GAO report (GAO 06-392) that looked
at security evaluations as implemented by US government agencies
and programs.

The “moderate assurance” EAL 4 evaluation can take “only $150,000
and 9 months” or as much as $350,000 and 25 months.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 16!

Here’s an interesting question: how many “security products” are there,
compared to the number that are evaluated?

I’m not sure there’s a practical way to measure that, since it’s hard to
say what constitutes a distinct product, and at what point is it worth
counting.

I used product review information from security magazines in 2003 and
2004 to try to estimate how many products actually get evaluated.

As you can see, only a few percent of security products reviewed were
evaluated products – around 3% to 6%

Interestingly, a lot of evaluated products were not reviewed in security
magazines – maybe 10% of such products. This is probably because a
lot of European evaluated products are very specialized and wouldn’t
appeal to a broad IT market.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 17!

Things seemed a bit clearer in the firewall community, at least in ‘03
and ‘04. There were between a dozen and two dozen firewalls
evaluated each year. It seems that between a third and a fifth of the
evaluated firewalls were actually reviewed in a security magazine.

Thus we have something closer to 20% of all firewall products being
evaluated.

While this suggests that a lot of firewall vendors have bought into
getting evaluations, it indicates that the majority were still avoiding
evaluations.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 18!

So, yes, it’s hard to tell what these numbers mean.

And thanks to Randal Munro and XKCD for that last slide.

Most papers referenced in this talk may be found here: http://
www.cryptosmith.com/archives/61

A list of citations appears at the end.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 19!

[This reflects comments I made at the end of my talk]

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 20!

The following are charts and graphs that I prepared for my presentation
and then decided not to include.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 21!

The TCSEC introduced the C-B-A 3-2-1 sequence to entice or lure
vendors to seek higher levels of assurance for their evaluated products.

Those narrow colored lines embedded among the gray show how few
products actually changed their assurance level between 1984 and
2006.

The gray wedge on the bottom represents “new” products.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 22!

This is actually old news, but it’s a relevant bit of history.

This looks at all product evaluations by vendors in the United States.
The blue line shows product evaluations performed in the United
States, while the pink line shows evaluations performed overseas on
US products.

I bring this up because there tends to be a nationalistic element to
product evaluations, partly for national defense reasons, and partially to
generate work for domestic workers instead of foreign workers.

Note that product evaluations weren’t consistently performed in the
vendor’s home country. While there was a big spike in US evaluations
in 1994, there was a multi-year spike in foreign evaluations that peaked
in 1999. Not all evaluations returned home by 2005, though a lot of US
evaluations took place once our government recognized CC
evaluations.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 23!

Now, here’s another chart, and I’m sorry that I can’t report on more
recent data. This shows the cumulative number of evaluations grouped
by vendor, taking into account mergers as much as I could. The big
blue triangle indicates vendors and their products who tried the
evaluation thing but didn’t keep at it.

The cream colored frosting on top shows the product evaluations from
vendors who have completed two or more evaluations as of 2005

This shows that some vendor organizations buy into the pain and
expense of evaluations: they develop the corporate infrastructure, their
marketing people get used to promoting it, and it works its way into the
product costs. Such enterprises do tend to keep evaluating products,
while others may try it once and give it up as too much cost for too little
benefit.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 24!

Roger Schell and I also spoke briefly about the assurance numbers. He
and I have a dramatically different view of the TCSEC and the role of
A1-style assurance in theory and practice. Schell is undoubtedly more
of an authority than I am. It is also clear, however, that he clings to a
very specific point of view.

During the panel, Schell said a properly evaluated system should never
require security patching. He gave two examples: BLACKER and the
evaluated version of Multics. I have no information about BLACKER,
but I used Multics systems that were indeed fixed and improved over
time. Schell and a couple of NSA veterans argued that there was at
least one Multics system at the agency that ran for 20 years without any
patching. The unstated (and unsubstantiated) implication was that the
unpatched system remained secure.

When Schell talked to me personally about the LOCK statistics, he said
that the numbers were completely different from what he saw on other
A1 projects, notably BLACKER. It wasn’t clear what he saw, and he has
no documentation to support his observation. His conclusion, however,
was that LOCK had not in fact performed the A1 process correctly. I can
not agree with his conclusion. Published and peer-reviewed materials
about the LOCK program likewise contradict Schell’s conclusion.

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 25!

GAO, “Information assurance: national partnership offers benefits, but
faces considerable challenges,” (Report GAO 06-392). Washington,
DC: United States Government Accountability Office, 2006.

Smith, “Trends in Security Product Evaluations" (PDF), Information
Systems Security 16 (4), 2007.

Smith, “Cost profile of a highly assured, secure operating system” ACM
Transactions on Information and System Security (TISSEC), 2001

Smith, “Historical Survey of Security Product Evaluations" (PDF),” Proc.
22nd National Information Systems Security Conference, 2000.

Smith, “Constructing a High Assurance Mail Guard" (PDF), Proc. 17th
National Computer Security Conference, 1994.

Find my papers here: http://www.cryptosmith.com/archives/61

TCSEC: My Own Lessons Learned! ACSAC 2013!

© Copyright 2013, Richard E. Smith.! 26!

